§1.3 - Classification of Differential Equations

Ordinary
\[
\frac{dy}{dx} = 3x + y \\
3 \frac{d^2y}{dx^2} + x \frac{dy}{dx} + y = 0
\]

Partial
\[
\frac{\partial^2 y}{\partial x^2} + \frac{\partial^2 z}{\partial x^2} = 0 \\
\frac{\partial y}{\partial x} + \frac{\partial y}{\partial x_2} + \frac{\partial y}{\partial x_3} = 0
\]

System
\[
\begin{align*}
\frac{\partial z}{\partial x} &= 3x^2 - 3y \\
\frac{\partial z}{\partial y} &= -3x + 4y
\end{align*}
\]

Definition

Let \(f(x) \) be a function. An **ordinary differential equation** is an equation involving \(x, f(x), \) and some derivative(s) of \(f(x). \)

Note

- We typically replace \(f(x) \) by \(y, \) and often do not write \(y(x) \) explicitly, but \(y \) is a function of \(x. \)
- Nonetheless, the particular variable and function names \((x, y, f) \) are unimportant, and you should understand their role from context. For example, while we won't usually do this, \(\frac{dx}{dy} = 5y \) is a perfectly valid ODE, as is \(x(f) + x'(f) = 3. \) (Though the latter is particularly obnoxious to read.)

Definition

The **order** of a differential equation is the order of the highest derivative

\[
\begin{align*}
\text{TE} & \rightarrow y' = 5y + x \quad \text{is order 1} \\
& \quad \downarrow \quad \downarrow \\
& \rightarrow y'' + y = 3 \quad \text{is order 2} \\
\text{TE} & \rightarrow y' y'' + y = x^2 \quad \text{is order 2} \\
& \quad \downarrow \\
& \rightarrow xy'' + 2y'' + (xy)^5 = x^3 \quad \text{is order 4}
\end{align*}
\]
A general n^{th} order ODE has the form

$$G(x, y, y', ..., y^{(n)}) = 0$$

for some function $G : \mathbb{R}^{n+2} \to \mathbb{R}$. Necessary

1. $f(x)$ is an explicit solution for

$$G(x, y, y', ..., y^{(n)}) = 0$$
in an interval $I \subset \mathbb{R}$ if

$$G(x, f(x), f'(x), ..., f^{(n)}(x)) = 0 \quad \forall x \in I.$$

2. $y = x^2$ solves $(y'')^3 + (y')^2 - y - 3x^2 - 8 = 0$

(Why? Because if $f(x) = x^2 \Rightarrow f'(x) = 2x \Rightarrow f''(x) = 2x^2 + (2x)^2 - x^2 - 3x^2 - 8 = 0$)

3. This is great news! It means that, although finding a solution may be challenging, checking if a particular function is a solution is easy. You can easily check your answer yourself for almost all the questions in this course!

Linear vs. Nonlinear

1. An ODE

$$G(x, y, y', ..., y^{(n)}) = 0$$

is **linear** if \(\exists a_0(x), a_1(x), ..., a_n(x), b(x) \) such that

$$G(x, y, y', ..., y^{(n)}) = a_0(x)y + a_1(x)y' + ... + a_n(x)y^{(n)} + b(x).$$

It is **nonlinear** otherwise.

2. $3xy'' + x^2y = 5x$ is **linear**, $yy' = x$ is **nonlinear**.

We will see that solving linear ODEs is much easier.
Just as with equations, we may have systems of ODEs such as

\[
\begin{align*}
\frac{dx}{dt} &= ax + bxy \\
\frac{dy}{dt} &= cy + dxy
\end{align*}
\]

where the goal is to solve both ODEs simultaneously, that is we want functions \(f_1(t) \) and \(f_2(t) \) such that setting \(x = f_1(t) \) and \(y = f_2(t) \) makes \(^{(both)}\) the above equalities hold.